Entrer un problème...
Algèbre linéaire Exemples
Étape 1
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 2
Étape 2.1
Ajoutez aux deux côtés de l’équation.
Étape 2.2
Divisez chaque terme dans par et simplifiez.
Étape 2.2.1
Divisez chaque terme dans par .
Étape 2.2.2
Simplifiez le côté gauche.
Étape 2.2.2.1
Annulez le facteur commun de .
Étape 2.2.2.1.1
Annulez le facteur commun.
Étape 2.2.2.1.2
Divisez par .
Étape 2.2.3
Simplifiez le côté droit.
Étape 2.2.3.1
Divisez par .
Étape 3
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 4
Étape 4.1
Factorisez à l’aide de la méthode AC.
Étape 4.1.1
Étudiez la forme . Déterminez une paire d’entiers dont le produit est et dont la somme est . Dans ce cas, dont le produit est et dont la somme est .
Étape 4.1.2
Écrivez la forme factorisée avec ces entiers.
Étape 4.2
Si un facteur quelconque du côté gauche de l’équation est égal à , l’expression entière sera égale à .
Étape 4.3
Définissez égal à et résolvez .
Étape 4.3.1
Définissez égal à .
Étape 4.3.2
Ajoutez aux deux côtés de l’équation.
Étape 4.4
Définissez égal à et résolvez .
Étape 4.4.1
Définissez égal à .
Étape 4.4.2
Soustrayez des deux côtés de l’équation.
Étape 4.5
La solution finale est l’ensemble des valeurs qui rendent vraie.
Étape 5
Définissez le dénominateur dans égal à pour déterminer où l’expression est indéfinie.
Étape 6
Étape 6.1
Définissez le numérateur égal à zéro.
Étape 6.2
Résolvez l’équation pour .
Étape 6.2.1
Factorisez en utilisant la règle du carré parfait.
Étape 6.2.1.1
Réécrivez comme .
Étape 6.2.1.2
Vérifiez que le terme central est le double du produit des nombres élevés au carré dans le premier terme et le troisième terme.
Étape 6.2.1.3
Réécrivez le polynôme.
Étape 6.2.1.4
Factorisez en utilisant la règle trinomiale du carré parfait , où et .
Étape 6.2.2
Définissez le égal à .
Étape 6.2.3
Soustrayez des deux côtés de l’équation.
Étape 6.3
Excluez les solutions qui ne rendent pas vrai.
Étape 7
Le domaine est l’ensemble des valeurs de qui rendent l’expression définie.
Notation d’intervalle :
Notation de constructeur d’ensemble :
Étape 8